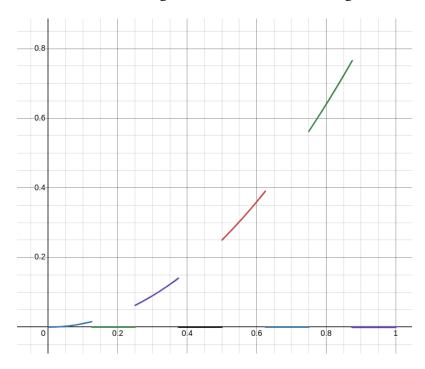
1. The set $\{x(t) \in L^1[0,1] : 0 \le x(t) \le t^2\}$ is not compact.

Proof: let's construct a sequence of functions f_n , such that there aren't any converging subsequences.

On the n-th step we will break the closed interval [0,1] into 2^n parts. On the first interval we will assign $f_n=t^2$, on the second interval $f_n=0$, on the third interval $f_n=t^2$ and so on. The resulting function is indeed integratable.



If we consider $|f_n(t)-f_m(t)|, n\neq m$ then it will be equal to t^2 on half of the smaller intervals and 0 on the other half, and so

$$\int_0^1 \lvert f_n(t) - f_m(t) \rvert \ dt = \frac{1}{2} \int_0^1 t^2 dt = \frac{1}{6}$$

And so there is the same positive difference between each ellement of the sequence and hence it can't have any converging subsequences ■.

2. Suppose we have two Lie algegras on \mathbb{R}^3 : g^+ and g^- with brackets $[-,-]_+$ and $[-,-]_+$ such that

$$\begin{bmatrix} e_1, e_2 \end{bmatrix}_+ = e_3 \qquad \begin{bmatrix} e_1, e_2 \end{bmatrix}_- = e_3$$
 $\begin{bmatrix} e_2, e_3 \end{bmatrix}_+ = e_1 \qquad \begin{bmatrix} e_2, e_3 \end{bmatrix}_- = e_1$ $\begin{bmatrix} e_3, e_1 \end{bmatrix}_+ = e_2 \qquad \begin{bmatrix} e_3, e_1 \end{bmatrix}_- = -e_2$

Are they in the same orgit of $GL(3,\mathbb{R})$ action?

Solution no, they aren't. Let's construct Killing form from these two algebras. Reminder that Killing form is a biliniar form:

$$B(x,y) = \operatorname{tr}(ad(x) \circ ad(y))$$

where ad(x) is a linear operator [x, -]. This biliniar form is constructed canonically from the Lie algebra. Let's calculate it for our two algebras:

$$B_{+}(x,y) = -2x_1y_1 - 2x_2y_2 - 2x_3y_3$$

$$B_{-}(x,y) = 2x_1y_1 - 2x_2y_2 + 2x_3y_3$$

And so as we can see these two forms have different signatures and hence one can't be obtained from another using $GL(3,\mathbb{R})$ group action, which means that one lie algebra also can't be obtained from the other one using $GL(3,\mathbb{R})$ group action \blacksquare .